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Testing for multinormality with goodness-of-fit tests based
on phi divergence measures
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Abstract

In this paper, a beta transform of multivariate normal datasets is obtained. The phi diver-
gence measure, DΦ(F,G) between two distributions F and G is used to obtain a goodness-
of-fit test to multivariate normality (MVN) based on the theoretical density function of the
beta transformed random variable and a window-size-spacing-based sample density func-
tion. Three versions of the statistic are derived from three known phi divergence measures
that are based on a sum of squares. The empirical critical values of the statistics are obtained
and the empirical type-one-error rates as well as powers of the statistics in comparison with
those of other well-known competing statistics are computed through extensive simulation
study. The study shows that the new statistics have good control over type-one-error and are
highly competitive with the existing well-known ones in terms of power performance. The
applicability of the new statistics is also carried out in comparison with three other efficient
techniques using four different datasets, and all the competing statistics agreed perfectly
in their decisions of rejection or otherwise of the multivariate normality of the datasets. As
a result, they can be regarded as appropriate statistics for assessing multinormality of datasets
especially, in large samples.

Key words: beta transform of multivariate normal observation, empirical critical value,
entropy estimator, phi divergence measure, power of a test.

1. Introduction

The search for a more tractable, highly powerful and generally acceptable goodness-
of-fit techniques for assessing the normality of a set of data has continued to receive the
attraction of cross-generational researchers in the field of statistical methodology. Since
the pioneer work of Pearson (1900), more than ten scores of such techniques at both uni-
variate and multivariate spheres have been introduced in the literature from diverse unique
characterizations of the normal distribution. These characterizations range from the distri-
bution functions, generating functions (moment generating function, characteristic function
and Laplace transform), skewness and kurtosis and entropy, to mention but a few, to other
characterizations of various transformations of the normal distribution.
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Of particular attention are tests for multivariate normality (MVN). This is probably due
to the fact that most classical multivariate statistical techniques, with diverse applications in
many areas of study such as machine learning, econometrics and genomics, require multi-
variate normality. Suppose x1, x2, . . ., xn; x j ∈ Rd , j = 1,2, . . .,n is a sequence of n inde-
pendent and identically distributed (iid) d-dimensional random vectors from an unknown
distribution F(x) ; where d ≥ 2 is an integer. The problem of testing for MVN is that of
testing the null hypothesis

H0 : F(x) ∈ FN (1)

against an alternative that F(x) /∈ FN ; where FN is a class of nondegenerate d-dimensional
multivariate normal distributions with mean vector µ and nondegenerate covariance matrix
Σ. Examples of tests devoted to (1) in the literature include Healy (1968), Mardia (1970,
1974), Malkovich and Afifi (1973), Small (1978), Royston (1983), Srivastava (1984), Bar-
inghaus and Henze (1988), Henze and Zirkler (1990), Singh (1993), Romeu and Ozturk
(1993), Henze and Wagner (1997), Hwu et al. (2002), Szekeley and Rizzo (2005), Pudelko
(2005), Doornik and Hansen (2008), Liang et al. (2009), Cardoso de Oliveira and Ferreira
(2010), Hanusz and Tarasinska (2012), Zhou and Shao (2014), Thulin (2014), Korkmaz et
al. (2014), Tenreiro (2017), Madukaife and Okafor (2018), Madukaife and Okafor (2019),
Henze and Jimenez-Gamero (2019), Henze et al. (2019), Henze and Visagie (2020), Dorr
et al. (2020a, 2020b). For extensive reviews on different tests for MVN in their various
classes, see Henze (2002), Mecklin and Mundfrom (2004), Ebner and Henze (2020) as well
as Chen and Genton (2023).

Some of the developed techniques are direct extension of tests for univariate normality
to their multivariate counterparts. For instance, Epps and Pulley (1983) developed a test
for univariate normality as an integral of the squared difference between the theoretical and
empirical characteristic functions of the univariate normal distribution. They showed that
the test was very consistent against all fixed alternatives and affine invariant (invariant with
respect to changes in location and scale) with competitive high power performance. Be-
cause of its interesting properties, Baringhaus and Henze (1988) developed its multivariate
counterpart. Since then, several versions of it have been developed and they are coined
Baringhaus-Henze-Epps-Pulley (BHEP) class of tests for multivariate normality by Csorgo
(1989). In a like manner, Shapiro and Wilks (1965) obtained an omnibus test for assessing
univariate normality of a dataset, x1, x2, . . ., xn; x j ∈ R, j = 1,2, . . .,n, which they defined
as a ratio of two variance estimators obtained from the dataset and stated that if the dataset
is drawn from a normal distribution, then the two estimators would amount to the same
value, thereby approaching 1. With the intension of obtaining a multivariate test that in-
herits the good power performance of the Shapiro and Wilks (1965) test, Villasenor and
Gonzalez-Estrada (2009) extended it to the multivariate sphere and the resultant statistic
shows an appreciable good power performance. Recently, Tavakoli et al. (2020) applied the
sample entropy measure of Vasicek (1976) to estimate phi divergence measures DΦ(F,G)

between a normal distribution, F and an unknown distribution, G, from where a random
sample x1, x2, . . ., xn; x j ∈ R, j = 1,2, . . .,n is drawn. They argued that if G is also a normal
distribution, then, DΦ(F,G) will be a minimum. With this, they introduced consistent and
affine invariant tests for univariate normality which are very tractable and have high power
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performances with good control over type-I-error. Since the search for more tractable tests
for MVN with relatively high competitive performances is an open research in the literature,
it suffices that extension of the Tavakoli et al. (2020) procedures to their multivariate coun-
terparts with some one-to-one transformations would, no doubt, retain the properties and
hence serve as highly competitive tests for MVN. This is the purpose of the present paper.
The rest of the paper is presented as follows: the statistics are developed in Section 2, with
their properties. Section 3 gives the empirical critical values as well as the empirical size
and power comparisons. Section 4 gives some real-life applications of the new statistics in
comparison with some other statistics while the paper is concluded in Section 5.

2. The test statistic

Suppose x1, x2, . . ., xn; x j ∈ Rd , j = 1,2, . . .,n, and d ≥ 2 is a d-dimensional random
sample from a continuous distribution F . Healy (1968) obtained the sample Mahalanobis
squared distances of the observations, which he defined as squared radii, as

y j = (xj −xn)
T S−1

n (xj −xn) ; j = 1, 2, . . ., n (2)

where xn = n−1
∑

n
j=1 xj is the sample mean vector and Sn = (n−1)−1

∑
n
j=1 (xj −xn)(xj −xn)

T

is the sample covariance matrix. Under the null distribution of multivariate normality of
F , Healy (1968) stated that the squared radii are asymptotically distributed as chi-squared
observations with d degrees of freedom. Gnanadesikan and Kettenring (1972) obtained
a transform of the squared radii as

z j =
n

(n−1)2 (xj −xn)
T S−1

n (xj −xn) ; j = 1, 2, . . ., n (3)

and stated that z j’s are exact independent univariate observations from the beta distribution
of the first kind, B(a,b) with parameters a = d/2 and b = (n−d −1)/2 under the MVN of
F , where n and d have their usual meanings. The exactness of this assumption was proved
by Bilodeau and Brenner (1999) and it has since been used in goodness-of-fit statistics such
as Small (1978), Hanusz and Tarasinska (2012) and Madukaife (2017). It is interesting to
note here that the transformations in (2) and (3) are functions of d-dimensional observations,
d > 1. However, even when the observations emanate from a univariate distribution, d = 1,
it is natural to still obtain z j’s as beta distributed independent observations, B(a,b), with
a = 1/2 and b = (n−2)/2. As a result, the statistics obtained in this study can also apply
to univariate normality testing.

Now, the phi divergence measure between any two distributions FX and GX , with density
functions f (x) and g(x) respectively, is defined by

DΦ(FX ,GX ) =
∫

∞

−∞

Φ

(
g(x)
f (x)

)
f (x)dx (4)

where Φ(x) is a convex function such that Φ(1) = 0 and Φ
′′
(1) > 1. At different times,

a number of works have independently obtained different convex functions satisfying the
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conditions of the Φ(x) in (4) and these works have led to different phi divergence functions.
Some of them include the following, as listed in Tavakoli et al. (2019) and Tavakoli et al.
(2020):

Kullback-Leibler divergence measure, Φ(x) = xlog(x).
Pearson divergence measure, Φ(x) = (x−1)2;
Hellinger divergence measure, Φ(x) = 1/2(

√
x−1)2;

Triangular divergence measure, Φ(x) = (1−x)2

1+x ;
Lin-Wong divergence measure, Φ(x) = xlog

( 2
1+x

)
;

Jeffreys divergence measure, Φ(x) = (x−1)log(x);
Total variation divergence measure, Φ(x) = |x−1|; and

Balakrishnan-Sanghvi divergence measure, Φ(x) =
( x−1

x+1

)2
. For more divergence mea-

sures and more details on them, readers are referred to Lin (1991).

Now, using the method of estimating the entropy of a random variable by Vasicek
(1976), Tavakoli et al. (2020) obtained DΦ(F,G) in (4) when G is normal with mean µ

and variance σ2 and F is unknown as:

DΦ(FX ,GX ) =
∫ 1

0
Φ

 (2πσ2)−1/2exp
(
−
(
F−1(p)−µ

)2
/2σ2

)
(dF−1(p)/d p)−1

2

d p (5)

where F(x) = p =⇒ F−1(p) = in f {x : F(x) = p} ; p ∈ (0,1). Replacing F in (5) with Fn

(the empirical distribution function) and using the difference operator in place of differential
operator, they obtained an estimator, VΦ of DΦ(F,G) as a generic statistic for testing the
normality of a set of n observations. The statistic is given as:

VΦ =
1
n

n

∑
j=1

Φ

(
n√

2πσ̂2
exp

{
−
(X( j)− µ̂)2

2σ̂2

} (
X( j+m)−X( j−m)

)
2m

)
(6)

where X( j) is the jth order statistic, j = 1, 2, , . . ., n, of the random sample, X1, X2, . . ., Xn

such that X(1) ≤ X(2) ≤ . . . ≤ X(n); µ̂ = X ; σ̂2 = n−1
∑

n
j=1(X j −X)2 and m, known as

the window size or spacing, is an integer such that m ≤ n
2 . They proved that the statistic is

consistent against fixed alternatives and that it is affine invariant. The test rejects the null
hypothesis of normality for large values of the statistic and it is said to be generic because
it is ammenable to any specific phi function in the class of phi divergence measures.

It is very clear from Vasicek (1976) as well as Tavakoli et al. (2020) that the development
of the theory behind (5) and (6) does not depend on the normality of FX and GX . As a
result, a plug-in method is possible for goodness-of-fit statistics to statistical distributions.
Therefore, let z1, z2, . . ., zn be the beta transforms of the random sample according to (3)
and let GZ be beta distributed with parameters a and b such that

g(z) =
1

B(a,b)
za−1(1− z)b−1; 0 < z < 1 (7)
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Then, replacing the normal density function in (5) with that of the beta in (7), DΦ(F,G)

can be presented as:

DΦ(FZ ,GZ) =
∫ 1

0
Φ

(
B(a,b)−1

[
F−1(p)

]a−1 [1−F−1(p)
]b−1

(dF−1(p)/d p)−1

)2

d p (8)

This gives rise to a new generic goodness-of-fit statistic obtained similar to (6) by re-
placing F with Fn and using difference operator in place of differential operator. It is given
as:

Mn,Φ =
1
n

n

∑
j=1

Φ

(
nΓ (a+b)(Z( j))

a−1(1−Z( j))
b−1
(
Z( j+m)−Z( j−m)

)
2mΓ (a)Γ (b)

)
(9)

where a = d
2 ; b = (n−d−1)

2 and m has its usual meaning. The test rejects the null hypo-
thesis of MVN for large values of the statistic. Also, it is invariant with respect to changes
in the scale and location of the observation vectors. This is because the transformations in
(2) and (3) are standardized transformations that result in beta distributed observations with
constant parameters for each n and d such that no matter the affine transformation in xj’s,
j = 1, 2, . . ., n, z j’s have a specified beta distribution with specified parameters.

Theorem 2.1: Suppose x1, x2, . . ., xn; x j ∈ Rd , j = 1,2, . . .,n is a random sample from
an unknown continuous distribution F(x) with a probability density function f (x). The
statistic Mn,Φ obtained from the observation vectors is invariant with respect to changes in
scale and location of the observation vectors.

Proof:
Let C be defined as a dxd nonsingular matrix of constants and u a d-component vector of

constants. The affine invariance of Mn,Φ stems from the affine invariance of the Mahalanobis
squared distance. That is, for x1, x2, . . ., xn, the sample mean vector is Xn and the sample
covariance matrix is Sn. Also, for affine transformed observation vectors Cx1 ± u,Cx2 ±
u, . . .,Cxn ± u, the sample mean vector is CXn ± u and the sample covariance matrix is
CSnC. Then the sample Mahalanobis squared distance of the affine transformed observation
vectors is given by:[

Cx j ±u−CXn ±u
]T

(CSnC)−1 [Cx j ±u−CXn ±u
]

[
C
(
x j −Xn

)]T
(CSnC)−1 [C(x j −Xn

)]
(
x j −Xn

)T CT (CT )−1
S−1

n C−1C
(
x j −Xn

)
=
(
x j −Xn

)T S−1
n
(
x j −Xn

)
Hence,

n

(n−1)2

(
x j −Xn

)T S−1
n
(
x j −Xn

)
= z j

=
n

(n−1)2

(
Cx j ±u−CXn ±u

)T
(CSnC)−1 (Cx j ±u−CXn ±u

)
j = 1, 2, . . ., n.
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Since Z ∼ B(a, b), where a = d
2 and b = (n−d−1)

2 which do not depend on any sample
observation vector xj, the invariance property is proved.

The invariance property of the Mn,Φ statistic, as proved in Theorem 2.1 is because the
transformations in (2) and (3) are standardized transformations that result in beta distributed
observations with constant parameters for each n and d such that no matter the affine trans-
formation in xj’s, j = 1, 2, . . ., n, z j’s have a specified beta distribution (with specified
parameters). As a result, under any null distribution of MVN, the value of the statistic is
unaffected at any fixed sample size n and variable dimension d.

Theorem 2.2: Suppose F(x) is an unknown continuous distribution in a d-dimensional
real space, Rd , with a probability density function f (x), having unknown mean vector and
unknown covariance matrix. Then, the test based on Mn,Φ is consistent.

Proof:
Under the null distribution of multivariate normality, Z ∼ B(a, b), where Z is the ran-

dom variable from where z j in (3) is assumed to have come from. Hence, as n, m → ∞ and
m/n → 0,

Fn
(
z( j+m)

)
− Fn

(
z( j−m)

)
≃ F

(
z( j+m)

)
− F

(
z( j−m)

)
≃

f
(
z( j+m)

)
+ f

(
z( j−m)

)
2

(
z( j+m) − z( j−m)

)
.

Now, it is obvious that the a and b in the distribution of Z are consistent since a is fixed
and b is based on sample size.

Hence, E (Mn,Φ) = E
(

1
n ∑

n
j=1 Φ

(
nΓ (a+b)(Z( j))

a−1(1−Z( j))
b−1(Z( j+m)−Z( j−m))

2mΓ (a)Γ (b)

))
= E

{
Φ

(
nΓ (a+b)(Z( j))

a−1(1−Z( j))
b−1
(
Z( j+m)−Z( j−m)

)
2mΓ (a)Γ (b)

)}
.

Again, Z( j−m) and Z( j+m) belong to an interval where f (z) is both positive and con-
tinuous. Then according to Vasicek (1976) and Tavakoli et al. (2020), there exists z∗j ∈(
Z( j−m),Z( j+m)

)
such that

F
(
Z( j+m)

)
−F

(
Z( j−m)

)
Z( j+m)−Z( j−m)

= f (z∗j).

Therefore, Mn,Φ → DΦ (FZ ,GZ) and hence, Mn,Φ is consistent.

3. Simulation study

In this section, extensive simulations are carried out to obtain the critical values of the
proposed test as well as to determine their relative performance. For these purposes, it is
important to first determine an appropriate window size, m for each sample size, n and
number of variables, d in a multivariate dataset. Wieczorkowski and Grzegorzewski (1999)
have proposed an optimal value of m for estimating the entropy of a distribution to be a
function of the sample size as m = [

√
n+0.5], where [x] is the integer part of x. However, it
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has been shown that an appropriate m also depends on the underlying distribution in addition
to the sample size as against the suggestion of Wieczorkowski and Grzegorzewski (1999).
Again, one serious problem with the application of Tavakoli et al. (2020) statistic is lack of
operational function for determining m.

Now, the statistic is based on the Vasicek (1976) estimator of the Shannon (1941)
entropy of a random variable. Therefore, the empirical mean squared error (EMSE) of
the Vasicek (1976) estimator was computed for all the possible values of m, m ≤ n

2 un-
der the beta distribution with parameters a = d

2 ; b = (n−d−1)
2 . This is carried out for

n = 5(5)100(10)150 and d = 2, 5, and, 10. In each combination of n and d, an ap-
propriate m is obtained as the one with the smallest EMSE and we used the selected m
values to obtain a linear trend equation of m for each combination of n and d as m =

3.2349 + 0.0808n − 0.2929d, with an R2 value of 89 percent, see Figure 1. The Vasicek
(1976) estimator is given by Hmn = 1

n ∑
n
j=1 log

{ n
2m

(
X( j+1)−X( j−m)

)}
and the EMSE is

based on 10,000 replications of each sample size, n drawn from the beta distribution with
parameters a = d

2 ; b = (n−d−1)
2 .

Figure 1: 3D scatter plot of n, d and associated m

3.1. Empirical critical values of the test

The statistic proposed in this work is generic in nature. Therefore, its critical value,
application and performance depend on the specific phi divergence measure being used. We
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have stated that there are several phi divergence measures but our study in this section is lim-
ited to only three which are based on sum of squares. They are the Pearson; Hellinger; and
Balakrishnan-Sanghvi divergence measures and the proposed statistic for them are M(P),
M(H), and M(BS) respectively.

For each combination of sample sizes n = 10 (5) 100 (10) 150 and random vector di-
mensions d = 2, 5, and 10, 5 percent level critical values were evaluated. To achieve this, a
total of N = 100,000 samples for each combination of n and d from the standard multivariate
normal distribution were generated and each generated sample was transformed into a beta
sample according to (3). Then, each of the three sum of square versions of the statistic is
computed from each of the beta transformed samples to arrive at N = 100,000 values of each
statistic. The 5 percent level critical value is calculated as the 95 percentile of the N values
in each version of the statistic. The critical values are presented in Table 1. The test then
proposes to reject the MVN of a dataset with sample size n and number of variables d if the
computed value of the statistic is greater than the corresponding critical value at 5 percent
level of significance.

Table 1: Empirical critical values at α = 0.05

M(P) M(H) M(BS)
n d = 2 d = 5 d = 10 d = 2 d = 5 d = 10 d = 2 d = 5 d = 10
10 0.5773 0.4318 - 0.1687 0.1695 - 0.1988 0.2195 -
15 0.6623 0.4764 0.8508 0.1604 0.1528 0.2220 0.1697 0.1853 0.2491
20 0.6173 0.4042 0.8188 0.1423 0.1250 0.2072 0.1422 0.1490 0.2281
25 0.5633 0.4044 0.4720 0.1262 0.1154 0.1311 0.1240 0.1324 0.1502
30 0.5281 0.3591 0.4713 0.1156 0.1019 0.1253 0.1112 0.1159 0.1402
35 0.4789 0.3473 0.3612 0.1047 0.0953 0.0997 0.1014 0.1067 0.1133
40 0.4464 0.3248 0.3557 0.0961 0.0884 0.0952 0.0932 0.0979 0.1064
45 0.4291 0.3141 0.3500 0.0914 0.0828 0.0918 0.0868 0.0916 0.1013
50 0.3956 0.2983 0.2953 0.0851 0.0790 0.0800 0.0812 0.0862 0.0896
55 0.3891 0.2848 0.2921 0.0826 0.0743 0.0775 0.0773 0.0813 0.0853
60 0.3626 0.2757 0.2622 0.0767 0.0714 0.0709 0.0728 0.0769 0.0784
65 0.3480 0.2656 0.2557 0.0728 0.0689 0.0683 0.0690 0.0741 0.0750
70 0.3434 0.2589 0.2518 0.0714 0.0653 0.0663 0.0667 0.0705 0.0725
75 0.3252 0.2490 0.2331 0.0682 0.0634 0.0622 0.0634 0.0677 0.0684
80 0.3243 0.2443 0.2284 0.0669 0.0617 0.0606 0.0619 0.0659 0.0660
85 0.3100 0.2368 0.2171 0.0642 0.0598 0.0581 0.0594 0.0632 0.0636
90 0.2980 0.2353 0.2144 0.0615 0.0587 0.0564 0.0569 0.0621 0.0615
95 0.2979 0.2306 0.2100 0.0608 0.0570 0.0549 0.0559 0.0600 0.0593

100 0.2876 0.2235 0.2041 0.0589 0.0550 0.0532 0.0537 0.0579 0.0580
110 0.2835 0.2163 0.1946 0.0565 0.0527 0.0509 0.0514 0.0553 0.0552
120 0.2741 0.2127 0.1880 0.0549 0.0510 0.0490 0.0495 0.0530 0.0528
130 0.2708 0.2093 0.1818 0.0536 0.0497 0.0468 0.0475 0.0512 0.0503
140 0.2542 0.2049 0.1786 0.0505 0.0483 0.0454 0.0450 0.0496 0.0485
150 0.2527 0.1975 0.1752 0.0495 0.0461 0.0442 0.0436 0.0474 0.0473

3.2. Description of the competing tests

Primarily, the three versions of our proposed test are according to the phi divergence
measures due to Pearson, Hellinger, as well as Barakrishnan and Sanghvi. They are
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M(P) =
1
n

n

∑
j=1

(U j −1)2

M(H) =
1
2n

n

∑
j=1

(√
U j −1

)2

M(BS) =
1
n

n

∑
j=1

(
U j −1
U j +1

)2

where U j =
nΓ(a+b)Za−1

( j) (1−Z( j))
b−1(Z( j+m)−Z( j−m))

2mΓ(a)Γ(b) ; a = d/2; b = (n−d−1)/2; Z( j) is the jth
order statistic of the Z-transformed dataset such that Z( j+m) = Z(n) for all j+m ≥ n and
Z( j−m) = Z(1) for all j−m ≤ 1.

The existing statistics considered in this work for a proper comparison with these new
ones include the Henze and Zirkler (HZ) test for MVN of Henze and Zirkler (1990); the
Madukaife (M) test for MVN of Madukaife (2017); and the Henze and Jimenez-Gamero
(HJG) test for MVN of Henze and Jimenez-Gamero (2019). The choice of the three com-
peting tests is not completely arbitrary. First, they are all affine invariant and consistent
L2−type tests for MVN with good power performances. Secondly, in most comparative
studies on powers of tests for MVN, the HZ−statistic has remained a reference point while
the HJG−statistic is similar to it. In fact, any test for MVN that competes favourably with
the HZ−statistic is generally regarded as a good statistic for assessing MVN of datasets.
Again, the M−statistic is also based on beta transform of multivariate datasets. Also, since
the choice of d presented in this work is d = 2, 5, 10, which represents multivariate datasets,
comparison with good univariate tests for normality such as Jargue and Bera (1987) as well
as Bayoud (2021) is not discussed here. It may be the interest of a future work. In what
follows, therefore, the three competing statistics are described.

3.2.1 Henze and Zirkler HZ test

Henze and Zirkler (1990) introduced a smoothing parameter, β in the weight function
of the consistent and affine invariant statistic due to Baringhaus and Henze (1988) to obtain
a highly regarded test for MVN of multivariate datasets. The statistic is given as:

HZ = n
(
4I {Sn is singular}+Dn,β I {Sn isnonsingular}

)
where Dn,β =

(
1+2β 2

)
+n−2

∑
n
j,k=1 exp

{
−β 2∥y j−yk∥2

2

}
− 2
(
1+β 2

)−d/2n−1
∑

n
j=1 exp

{
− β 2∥y j∥2

2(1+β 2)

}
; β > 0 and I {.} is an indicator function. The

test is universally consistent, affine invariant and rejects MVN of datasets for large values
of the statistic, with appropriate β = ((2d+1)n/4)/(1/(d+4))√

2
.
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3.2.2 Madukaife M test

Madukaife (2017) obtained a statistic to formalize the graphical test of Small (1978),
using the sum of squared differences between expected and sample order statistics according
to Madukaife and Okafor (2018), who also formalized the geometric procedure of Hanusz
and Tarasinska (2012) to a classical test procedure. The statistic, which is the sum of squared
differences between observed and expected order statistics of beta transformed observations,
is given as

M =
n

∑
j=1

(
z( j)− c j

)2

where z( j) is the jth order statistic of the beta transformed observations and c j is the cor-
responding jth expected order statistic from the beta distribution with parameters a = d/2
and b = (n−d−1)/2. The consistent and affine invariant test rejects the null hypothesis of
MVN for large values of the statistic.

3.2.3 Henze and Jimenez-Gamero HJG test

Henze and Jimenez-Gamero (2019) obtained a statistic for assessing MVN based on
the empirical moment generating function. It is a weighted squared integral of the differ-
ence between the theoretical and empirical moment generating functions respectively of the
standard multivariate normal distribution and a multivariate dataset. The statistic is given as

HJG = π
d/2

(
1
n

n

∑
j,k=1

1
β d/2 exp

{∥∥Yn, j +Yn,k
∥∥2

4β

}
+

n
(β −1)d/2

)

−2π
d/2

(
n

∑
j=1

1
(β − 1

2 )
d/2

exp

{∥∥Yn, j
∥∥2

4β −2

})
,

where β > 1,Yn, j is the jth d-dimensional standardized multivariate data point contained in
the standardized sample of size n and ∥.∥ is a vector norm. The HJG test rejects the null
distribution of MVN for large values of the statistic.

3.3. Size and power comparison of the competing tests

The power of a test, which is the ability of the test to reject a wrong null hypothesis, and
the size of a test, which is the maximum probability of rejecting a true null hypothesis, are
among the most important properties of a test. Although they can be obtained theoretically
when the true null distribution of the test statistic is known, the sizes and powers of the three
specific versions of the M(Φ) statistic however are obtained empirically and compared with
those of other well-known statistics in the literature. To achieve the objective of power
comparison in this work, four different classes of distributions other than the multinormal
distribution are identified. They are short-tailed symmetric distributions as group I; heavy-
tailed symmetric distributions as group II; short-tailed asymmetric distributions as group III;
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and heavy-tailed asymmetric distributions as group IV. Three distributions were considered
from each of the four groups in this study and they include the following:
Group I

Standard multivariate Laplace distribution (MVL)
Products of the univariate Laplace distribution

(
Ld(0,1)

)
Products of the univariate Laplace and the symmetric beta distribution(

Lp(0,1)⊗Bd−p(1.5,1.5)
)

Group II
Multivariate Cauchy distribution (MVC)
Multivariate t distribution with 2 degrees of freedom (MVt(2))
Products of the univariate t with 5 degrees of freedom and the Cauchy distributions(

t p(5)⊗Cd−p(0,1)
)

Group III
Products of the standard exponential distribution

(
Expd(1)

)
Products of the gamma distribution

(
Gd(1,3)

)
Products of the gamma and Gumbel distributions

(
Gap(1,3)⊗Gud−p(0,1)

)
Group IV

Products of the Pareto distribution
(
Pd(1,2)

)
Products of the standard lognormal distribution

(
LNd(0,1)

)
Products of the Weibull distribution

(
W d(1,2)

)
where p is an integar less than d.

A total of 10,000 datasets from each of the 12 distributions grouped into I-IV and the
standard multivariate normal distribution were simulated in each combination of sample
sizes n = 10, 25, 50, and100 and variable dimensions d = 2and5. For each of the combi-
nations of sample size and variable dimension, the values of each of the competing statistics
were calculated and the estimated power performance of each statistic was obtained as the
percentage of the 10,000 simulated samples that is rejected by the statistic at 5% level of sig-
nificance. The null distribution is the multivariate normal distribution. Therefore the power
performances of the statistics obtained from it are the empirical probabilities of committing
the error of type one, also known as the size of a test, which in this work are expected to
be equal to 5%. The type-one-error rates of the competing statistics are presented in Ta-
ble 2. Also, their power performances are presented in Tables 3 and 4 for sample sizes
n = 10, 25, 50, and100 respectively.

From the results in Table 2, all the six tests considered showed very good control over
type-one-error. This is because, none of them recorded a type-one-error of more than the 5%
level of significance in any of the combinations of sample size, n and variable dimension,
d. Again, while all the other tests, including the new techniques, maintained a type-one-
error of 5% (4.5% ≤ α < 5.5%) in all the combinations of n and d considered, the HZ
test maintained a conserved state (less than 5%) in all the variable dimensions considered at
sample sizes up to 50. This, however, is not a disadvantage to the technique, it rather assures
that the power performance of the statistic is completely devoid of the error of type-one. The
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Table 2: Empirical type-I-error rate of the competing statistics

n d HZ M HJG M (P) M (H) M (BS)

10
2 2.5 4.9 5.1 4.6 5.1 5.0
5 0.9 5.0 5.2 4.7 5.0 4.9

10 - - - - - -

25
2 4.2 5.2 5.2 4.8 5.0 5.2
5 3.3 4.9 4.5 4.9 5.0 5.2

10 3.3 5.1 5.2 4.8 5.0 5.3

50
2 4.4 5.0 5.2 5.1 4.8 4.8
5 4.1 4.9 5.2 5.2 4.8 4.6

10 4.2 5.2 4.8 5.4 5.0 4.8

100
2 4.7 5.0 5.2 5.0 4.9 5.0
5 4.7 4.9 4.7 4.6 4.9 4.8

10 4.8 5.0 4.8 4.9 5.0 5.2

150
2 4.8 5.0 5.0 5.0 4.8 4.9
5 4.8 5.1 4.9 4.9 5.0 5.0

10 4.9 5.0 5.2 5.2 4.9 4.8

error rates of all the statistics considered at sample size, n = 10 and variable dimension,
d = 10 are not obtained due to the fact that such a dataset is known to be singular. Based on
the results in Table 2, the new phi-divergence statistics can be said to have a good control
over type-one-error and hence can be recommended, at that instance, as a good technique
for testing MVN of datasets.

From Tables 3 and 4, it is observed that the new statistics are generally slightly more
powerful than the other competing techniques considered in this work under the alternative
symmetric distributions in Table 3, especially at large sample sizes of n > 25. The only ex-
ception, however, is the products of the univariate Laplace and symmetric beta distributions
where the HZ statistic is observed to be slightly more powerful than the rest of the tech-
niques considered, including the new statistics. Among the three new statistics obtained
from the sample phi-divergence measure statistic in (9), the M(BS) generally recorded least
power performance at small sample size but most powerful, together with the M(H), at large
sample sizes of n ≥ 25 under these alternative symmetric distributions.

Conversely, under the asymmetric alternative distributions in groups III and IV as pre-
sented in Table 4, it is observed that the new statistics are generally slightly less powerful
than the other three L2−type statistics, especially at large sample sizes. The only exception
is the products of the univariate gamma and Gumbel distributions where the new statistics
are as good as the other statistics. It is, however, expected that at large sample sizes of
n > 100, the power performances of all the competing statistics would be equal. Again,
it can be seen that under these alternative distributions in groups III and IV, the M(H)

performed better in their powers than the other two versions of the new phi-divergence
technique.
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Table 3: Empirical power comparisons of competing tests for MVN under alternative sym-
metric distributions in groups I and II, α = 0.05

Group Distributions n d HZ M HJG M (P) M (H) M (BS)

I

MVL
10

2 16.6 27.0 24.1 26.0 24.8 21.7
MVL 5 14.6 39.4 38.9 35.8 33.6 29.7
MVL

25
2 50.2 57.4 49.0 52.0 60.7 62.3

MVL 5 85.6 93.0 80.1 83.3 92.7 93.0
MVL

50
2 82.8 82.2 71.3 74.6 86.1 91.0

MVL 5 99.7 99.7 95.4 98.8 99.9 100.0
MVL

100
2 98.8 92.3 89.2 91.5 98.5 92.8

MVL 5 100.0 100.0 99.9 100.0 100.0 100.0
Ld (0,1)

10
2 11.3 21.5 17.6 19.5 19.3 16.2

Ld (0,1) 5 3.4 16.3 15.3 14.3 12.6 11.4
Ld (0,1)

25
2 34.4 45.1 39.8 40.4 45.9 46.4

Ld (0,1) 5 28.8 52.7 43.3 38.6 48.8 47.2
Ld (0,1)

50
2 63.3 68.6 58.2 59.4 71.2 76.1

Ld (0,1) 5 64.3 82.9 67.5 64.1 80.2 83.7
Ld (0,1)

100
2 91.1 90.4 78.6 77.7 91.8 96.3

Ld (0,1) 5 94.6 98.1 87.2 84.5 97.6 98.8
L(0,1)⊗B(1.5,1.5)

10
2 5.4 8.3 10.1 7.0 7.3 5.5

L3 (0,1)⊗B2 (1.5,1.5) 5 1.8 7.5 8.6 6.9 6.6 6.8
L(0,1)⊗B(1.5,1.5)

25
2 19.5 17.7 20.0 16.1 15.2 9.6

L3 (0,1)⊗B2 (1.5,1.5) 5 15.1 24.5 25.4 18.1 19.8 14.1
L(0,1)⊗B(1.5,1.5)

50
2 43.8 29.7 33.9 32.3 30.1 19.4

L3 (0,1)⊗B2 (1.5,1.5) 5 40.8 44.6 43.2 36.0 38.1 32.6
L(0,1)⊗B(1.5,1.5)

100
2 81.2 45.5 49.8 52.5 53.0 42.0

L3 (0,1)⊗B2 (1.5,1.5) 5 80.7 69.0 66.0 51.6 61.6 58.8

II

MVC
10

2 70.6 75.3 72.2 74.4 73.5 67.9
MVC 5 50.9 73.1 82.0 67.6 70.9 67.8
MVC

25
2 98.7 98.8 97.6 98.5 99.0 99.0

MVC 5 99.9 100.0 99.9 99.9 100.0 100.0
MVC

50
2 100.0 100.0 100.0 100.0 100.0 100.0

MVC 5 100.0 100.0 100.0 100.0 100.0 100.0
MVC

100
2 100.0 100.0 100.0 100.0 100.0 100.0

MVC 5 100.0 100.0 100.0 100.0 100.0 100.0
MVt (2)

10
2 29.4 38.7 43.8 36.7 36.3 36.1

MVt (2) 5 13.7 34.5 50.8 30.5 30.0 33.3
MVt (2)

25
2 71.1 81.2 79.8 78.1 79.6 83.9

MVt (2) 5 89.0 96.5 96.2 92.1 95.2 96.6
MVt (2)

50
2 93.4 96.7 95.8 95.3 96.7 98.7

MVt (2) 5 99.6 100.0 99.9 99.8 99.9 100.0
MVt (2)

100
2 99.8 99.9 99.9 99.7 99.9 100.0

MVt (2) 5 100.0 100.0 100.0 100.0 100.0 100.0
t (5)⊗C (0,1)

10
2 41.9 51.0 50.6 47.3 47.4 38.8

t3 (5)⊗C2 (0,1) 5 12.3 30.3 44.1 26.6 30.5 26.1
t (5)⊗C (0,1)

25
2 88.5 88.9 86.3 86.5 88.3 87.1

t3 (5)⊗C2 (0,1) 5 90.3 95.5 94.2 90.7 93.5 90.7
t (5)⊗C (0,1)

50
2 99.2 99.2 98.4 98.6 99.1 99.3

t3 (5)⊗C2 (0,1) 5 99.9 100.0 99.8 99.6 99.9 99.9
t (5)⊗C (0,1)

100
2 100.0 100.0 99.0 100.0 100.0 100.0

t3 (5)⊗C2 (0,1) 5 100.0 100.0 100.0 100.0 100.0 100.0
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Table 4: Empirical power comparisons of competing tests for MVN under alternative
skewed distributions in groups III and IV, α = 0.05

Group Distributions n d HZ M HJG M(P) M (H) M (BS)

III

Expd (1)
10

2 35.0 32.3 37.0 32.0 30.4 25.6
Expd (1) 5 11.4 19.3 29.6 18.8 17.7 16.6
Expd (1)

25
2 92.4 66.0 72.4 69.9 67.8 58.5

Expd (1) 5 92.2 77.2 76.8 69.4 71.0 66.4
Expd (1)

50
2 96.4 88.6 94.6 90.3 91.3 88.5

Expd (1) 5 99.9 96.6 95.1 92.9 94.6 93.9
Expd (1)

100
2 100.0 98.9 98.0 98.8 99.4 99.4

Expd (1) 5 100.0 100.0 99.8 99.6 99.9 99.9
Gad (1,3)

10
2 34.6 33.1 35.5 31.5 30.3 25.0

Gad (1,3) 5 12.2 19.1 29.0 19.3 17.3 16.1
Gad (1,3)

25
2 92.6 65.1 71.8 69.4 68.2 59.2

Gad (1,3) 5 92.2 76.9 75.3 68.3 71.3 65.0
Gad (1,3)

50
2 99.9 89.0 94.2 90.9 91.1 88.1

Gad (1,3) 5 100.0 96.5 94.8 92.5 94.4 93.6
Gad (1,3)

100
2 100.0 99.0 99.0 99.0 99.4 99.3

Gad (1,3) 5 100.0 99.9 99.9 99.6 99.9 99.9
Ga(1,3)⊗Gu(0,1)

10
2 10.0 23.7 26.4 20.9 22.1 16.7

Ga3 (1,3)⊗Gu2 (0,1) 5 2.3 14.1 21.7 13.7 12.7 11.3
Ga(1,3)⊗Gu(0,1)

25
2 36.4 51.0 57.5 51.5 49.0 39.5

Ga3 (1,3)⊗Gu2 (0,1) 5 28.8 63.2 63.5 53.9 56.5 49.4
Ga(1,3)⊗Gu(0,1)

50
2 67.0 74.7 84.6 75.0 75.5 67.8

Ga3 (1,3)⊗Gu2 (0,1) 5 67.7 90.6 88.5 80.4 86.1 82.3
Ga(1,3)⊗Gu(0,1)

100
2 93.2 93.5 98.7 91.3 93.4 93.0

Ga3 (1,3)⊗Gu2 (0,1) 5 95.8 99.4 99.0 96.3 98.5 98.3

IV

Pad (1,2)
10

2 73.4 67.5 68.7 65.9 65.7 57.7
Pad (1,2) 5 50.8 57.3 74.3 55.8 56.1 52.3
Pad (1,2)

25
2 99.9 95.7 97.8 96.9 96.6 95.2

Pad (1,2) 5 100.0 99.5 99.5 99.1 99.4 99.2
Pad (1,2)

50
2 100.0 99.7 100.0 99.9 99.9 99.9

Pad (1,2) 5 100.0 100.0 100.0 100.0 100.0 100.0
Pad (1,2)

100
2 100.0 100.0 100.0 100.0 100.0 100.0

Pad (1,2) 5 100.0 100.0 100.0 100.0 100.0 100.0
LNd (0,1)

10
2 57.7 54.3 56.8 52.3 52.8 44.5

LNd (0,1) 5 31.0 40.1 56.2 38.9 37.4 35.9
LNd (0,1)

25
2 98.9 90.0 92.4 90.8 90.5 86.5

LNd (0,1) 5 99.7 97.6 96.7 95.5 96.5 95.5
LNd (0,1)

50
2 100.0 99.3 99.9 99.4 99.4 99.1

LNd (0,1) 5 100.0 100.0 100.0 100.0 100.0 100.0
LNd (0,1)

100
2 100.0 100.0 100.0 100.0 100.0 100.0

LNd (0,1) 5 100.0 100.0 100.0 100.0 100.0 100.0
W d (1,2)

10
2 33.7 33.0 35.8 31.3 30.2 24.9

W d (1,2) 5 11.7 19.9 28.1 19.0 17.4 15.9
W d (1,2)

25
2 72.9 65.2 73.7 69.9 68.1 58.7

W d (1,2) 5 92.4 76.5 75.6 67.4 70.8 65.7
W d (1,2)

50
2 100.0 89.1 94.8 90.6 91.4 87.9

W d (1,2) 5 100.0 96.5 95.0 92.3 94.8 93.4
W d (1,2)

100
2 100.0 98.7 99.9 98.9 99.5 99.6

W d (1,2) 5 100.0 100.0 99.9 99.6 99.9 99.9
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Table 5: Mean empirical powers of competing tests for MVN, under alternative distribu-
tions, n ≥ 25 and α = 0.05

Distribution group HZ M HJG M (P) M (H) M (BS)
I 65.2611 66.3000 60.9889 59.5278 66.1778 64.6722
II 96.0778 97.5944 97.0444 96.6000 97.2833 97.5111
III 86.3611 84.7833 86.8611 82.7222 83.7389 80.1111
IV 97.9889 94.8778 95.8444 94.4611 94.8222 93.3667

In order to give a clearer picture of the competitive nature of the new tests, the mean
empirical power performances of the six competing statistics are presented in Table 5 and
it is evident from the table that the new statistics can be recommended as good tests for
assessing MVN of datasets, especially at large samples as well as when the dataset is known
to be symmetric.

4. Data application

In this section, the applicability of the new statistics is presented in comparison with
those of the other three competing techniques. This is carried out on a set of four multivari-
ate datasets, which are retrieved from https://openmv.net/tag/multivariate. The datasets are
as follows:
Brittleness index dataset: This is a 3-component dataset, comprising of 18 observation
vectors. It is obtained as measures of brittleness of plastic products produced in three par-
allel reactors, TK104, TK105 and TK107 as the components.
Film thickness dataset: This is a 4-component dataset obtained as thickness measurements
taken at four different positions of 160 plastic films after being cut. The measurement
positions which make up the data components included top right, top left, bottom right and
bottom left.
Room temperature dataset: This is another 4-component dataset which is obtained as
temperature measurements, in Kelvin, taken at four corners of a room. The measurement
corners which form the data components included front left, front right, back left and back
right and the measurements were taken 144 times, giving rise to a 144 rows by 4 columns
dataset.
Solvents dataset: The solvents dataset is a 9-component dataset which consists of physical
properties of a sample of 103 chemical solvents. The properties which form the data com-
ponents included melting point, boiling point, dielectric, dipole moment, refractive index,
ET30, density, logP and solubility.

The four datasets are tested independently for MVN using the six competing techniques
considered in this study, each at 5% α−level. The results comprise of their test statistics,
critical values and decisions of either rejection or otherwise of their MVN reached by com-
paring the test statistics values with their corresponding critical values. They are presented
in Table 6.

From the results in Table 6, all the six tests show perfect agreement in their decisions.
Specifically, none of the six competing techniques could reject MVN of the brittleness in-
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Table
6:

R
esults

oftests
forM

V
N

ofsom
e

real-life
datasets,

α
=

0.05

D
ataset

TestC
om

ponents
H

Z
M

H
JG

M
(P
)

M
(H

)
M
(B

S
)

B
rittleness

Index
C

om
puted

value
ofstatistic

0.428886
0.018040

0.113696
0.255089

0.079972
0.095587

C
riticalvalue

0.804912
0.055778

0.465075
0.495144

0.137537
0.154695

D
ecision

D
o

notreject
D

o
notreject

D
o

notreject
D

o
notreject

D
o

notreject
D

o
notreject

Film
T

hickness
C

om
puted

value
ofstatistic

0.992884
0.000945

2.477551
0.168497

0.036121
0.032316

C
riticalvalue

1.009868
0.002093

3.076987
0.202478

0.045625
0.045660

D
ecision

D
o

notreject
D

o
notreject

D
o

notreject
D

o
notreject

D
o

notreject
D

o
notreject

R
oom

Tem
perature

C
om

puted
value

ofstatistic
2.029179

0.025055
2134.348

0.507064
0.079452

0.053684

C
riticalvalue

1.008710
0.002518

3.051355
0.212408

0.047989
0.048165

D
ecision

R
eject

R
eject

R
eject

R
eject

R
eject

R
eject

Solvents
C

om
puted

value
ofstatistic

1.750361
0.108639

8604.996
0.351212

0.104571
0.107069

C
riticalvalue

0.997587
0.006947

9.441462
0.203694

0.053017
0.056799

D
ecision

R
eject

R
eject

R
eject

R
eject

R
eject

R
eject



STATISTICS IN TRANSITION new series, June 2025 17

dex and film thickness data while, on the other hand, they all rejected the MVN of room
temperature and solvents datasets. The result in this section further shows that the three new
statistics can be regarded as good statistics for testing MVN of datasets.

5. Conclusion

The plug-in techniques developed in this study for assessing MVN of multivariate datasets
have shown, through their size and power performances, that they can be regarded as good
statistics. Their affine invariance and consistency properties have been proved. Also, the
statistics can be adapted for goodness-of-fit test to other continuous distributions. Besides
good power performances, the new statistics are computationally less tedious since they are
based on univariate transform of multivariate datasets. Finally, it is not difficult to imple-
ment the new statistics developed in this paper to statistical software such as R so that users
can access them for applicability to real-life situations. As a result, they are recommended
as good techniques for testing normality of d-dimensional datasets, d ≥ 1.
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